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Abstract. Quasi-one-dimensional conductors which undergo a Peierls transition to a charge-
density-wave state at a temperatureTP show a region of one-dimensional fluctuations aboveTP .
The Ginzburg–Landau–Langevin theory for the frequency-dependent collective conductivity from
conductive fluctuations into the charge-density-wave state is developed. By inclusion of a phase-
breaking term the effect of local pinning due to random impurities is simulated. It is found that
the spectral weight of the unpinned fluctuations is partly redistributed into a pinned mode around a
pinning frequency in the far-infrared region. In addition, selection rule breaking by the impurities
makes the fluctuating amplitude mode visible in the optical response.

1. Introduction

Quasi-one-dimensional conductors like the transition metal chalcogenides are characterized
by a nested Fermi surface. This renders them unstable to the Peierls transition when electron–
phonon backscattering between the two sheets of the Fermi surface becomes relevant. We call
this a Peierls system (PS). The ensuing charge-density-wave (CDW) which develops below a
transition temperatureTP of the order of 200 K shows many unusual properties, especially in
its electronic responses [1].

In recent years it became increasingly evident that the electronic properties of PS in
their normal phase (T > TP ) are also unusual. Photoemission studies (references [2, 3]
and earlier work cited therein) point towards possible non-Fermi-liquid (NFL) behaviour.
The microwave and optical response also deviates from the Drude predictions for a normal
metal [4, 5]. Specifically, the real part of the complex conductivity function Reσ(ω, T0)

for the chain direction and at room temperatureT0 shows the presence of a pseudo-gap at
ω ≈ 210 where10 is the zero-temperature half-gap of the corresponding CDW. In addition,
a peak structure appears in the far infrared well below the pseudo-gap. This peak resembles
the pinned Fr̈ohlich mode at about the same frequency but seen in the fully developed CDW.
Similar results were also found for PS films [6].

In principle, these features have been known of for a long time from studies of the CDW
material K2Pt(CN)4Br0.3·3(H2O) (KCP) in which fluctuation effects due to intrinsic disorder
are prominent. In [7] the ac conductivity of KCP is modelled by a dielectric function which
takes pinning–unpinning fluctuations into account.
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A related explanation for the optical data is provided by the concept of fluctuating CDW
segments which behave similarly to the fully developed CDW. These segments are pinned by
random impurities which break the phase invariance of the equation for the fluctuating order
parameter.

In view of the one-dimensional nature of fluctuations above the temperatureT ∗ > TP
below which transverse fluctuations set in to initiate the phase transition, the observed effects
could also be a signature of NFL behaviour. The latter seems to be established for some of the
Bechgaard salts [8–10] where CDW fluctuations are not important.

In the case of PS, the attractive backscattering and the softening of the Peierls phonons
make a plain Luttinger-liquid scenario unlikely. Voit [11, 12] advocates a Luther–Emery
state [13] for the electrons in blue bronze as an explanation of the photoemission spectra. In
this case a spin gap would open before true CDW formation occurred. Such conclusions,
however, are not undisputed. Shannon and Joynt [14] argue in favour of a model [15, 16] for
a fluctuating Peierls system (FPS). The unusual plasmon dispersion in quasi-one-dimensional
conductors can also be understood in terms of a conventional band picture [17]. There seems to
be good reason to pursue the FPS concept for one-dimensional metals with CDW fluctuations.

The FPS model has recently been extended by McKenzie [18]. He calculates the one-
particle Green’s function for Gaussian order parameter fluctuations and large correlation length
using Sadovskii’s exact method [19]. He points out that the electron spectral function of a
FPS is of NFL type as found earlier in the same context [20]. McKenzie also calculates
renormalized coefficients for Ginzburg–Landau functionals of PS. The model which we will
solve for the collective conductivity corresponds to the FPS concept.

The present paper computes the frequency-dependent conductivity from one-dimensional
conductive order parameter fluctuations using a modified, linear Ginzburg–Landau–Langevin
(GLL) equation for CDW including phase breaking by impurities. In superconductivity (SC)
where phase pinning does not exist, this part of the conductivity was first investigated by
Aslamazov and Larkin [21] (AL). The CDW version of the AL theory was given in [22].

From SC it is known [23,24] that there are two further contributions from order parameter
fluctuations to the dc conductivity: a resistive contribution from the reduction of the single-
particle density of states which is related to the pseudo-gap and the anomalous Maki–Thompson
[25,26] term which is conductive. In a CDW the latter becomes resistive [27] and dominates
the dc conductivity near the transition.

The issue of one-dimensional collective dc conductivity in a CDW was strongly debated
in the 1970s [22,28–32]. In [28] the idea of paraconductivity in one-dimensional metals with
dominant electron–phonon interaction was advanced using a GL approach. This result was
criticized in [29] where pinned collective fluctuations were shown to reduce the dc conductivity.
These authors also studied the corresponding results for the Hubbard and the Tomonaga–
Luttinger model. Detailed microscopic studies of FPS in [22, 30] find both resistive and
conductive fluctuations but neglect phase pinning. The dc paraconductivity of a commensurate
FPS was studied in [32] in a GL context. This paper served as a starting point for the present
work.

The paper is organized as follows. Section 2 develops the GLL approach for the CDW and
derives the known results for unpinned conductive fluctuations. Section 3 introduces a modified
GLL equation where phase invariance is broken in a way which simulates local pinning
by random impurities, and evaluates the basic correlation function of the order parameter
fluctuations. This result is used to calculate the frequency-dependent collective conductivity
exactly within the model. The complicated formula is evaluated approximately for pinning
frequencies small in comparison to the frequency of amplitude fluctuations in section 4. Two
appendices present mathematical details.
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2. The Ginzburg–Landau–Langevin approach

It is interesting to formulate the problem of fluctuation ac conductivity in a CDW without
pinning using the GLL method. One expects to find close similarities to the elegant
formulations for SC [33, 34]. However, it turns out that one must go beyond overdamped
dynamics which in the case of a CDW would only give an instantaneous response in the
current correlation function and thus a frequency-independent conductivity.

Our starting point is the GLL equation given directly in terms of the gap fluctuations1k:

1̈k(t) + γ01̇k(t) + ω2
k1k(t) = 0k(t). (1)

The parametersγ0 andωk are taken from [28, 31]. Static parameters below correspond to
the rigid-lattice values in [18]. For simplicity, the renormalization of the rigid-lattice (RL)
values due to fluctuations as proposed in [18] is not considered. Together with Hartree–Fock
corrections to the linear GL equation as in [35], it would extend the region of applicability
of the linearized approach which is marginal at the RL level. This and the absence of
resistive fluctuations prohibit a quantitative comparison with experiments. Below the CDW
transition temperature, McKenzie’s approach [18] is necessary to give the characteristic optical
absorption which has been measured in [36].

The damping constantγ0 is

γ0 = ω2
A

h̄π

8kBT
(2)

where

ω2
A = λω2

Q (3)

is the frequency of the amplitude mode of the fully developed CDW [37],ωQ is the bare
frequency of the 2kF phonon which goes soft, andλ is the electron–phonon coupling constant.

The actual frequencyωk of the amplitude fluctuations in (1) is

ω2
k = ω2

0(1 + k2ξ2) (4)

with

ω2
0 = ω2

AεRL. (5)

For definiteness we assume underdamping (γ0 < 2ω0) which is the case in the linear fluctuation
regime sufficiently above the transition temperature.

Without a form of selection rule breaking, neitherωA norω0 can be observed in optical
conductivity measurements. The amplitude modeωA can be seen, however, in Raman
scattering [38, 39]. The fluctuating amplitude mode above the transition temperature is
observed in neutron scattering studies [40,41].

The correlation lengthξ in (4) is

ξ2 = ξ2
0/εRL (6)

with εRL given by

εRL = ln
T

TRL
(7)

whereTRL is the rigid-lattice mean-field transition temperature. The reference lengthξ0 is
given by [31]

ξ2
0 =

7ζ(3)h̄2v2
F

16π2(kBT )2
. (8)
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The complex Gaussian Langevin force0 has zero mean. Its correlation function

〈0k(t)0∗k′(0)〉 = 〈|1k|2〉02γ0ω
2
kδk,k′δ(t) = 2γ0ω

2
0
kBT

f0
δk,k′δ(t) ≡ Aδk,k′δ(t) (9)

is constructed in such a way as to give the fluctuation intensity

〈|1k|2〉0 = kBT

ak
. (10)

The latter follows from the linear free-energy functional

F0 =
∑
k

ak|1k|2 (11)

with

ak = f0(1 + k2ξ2) f0 = LεRL

πh̄vF
. (12)

Note that (1) implies a spatial correlation of the order parameter according to

〈1(x, 0)1∗(0, 0)〉 = L

2π

∫
dk eikx〈|1k|2〉0 =

(
kBT πh̄vF

2ξεRL

)
e−|x|/ξ ≡ ψ2

RLe−|x|/ξ . (13)

In the next step the one-dimensional conductivity is computed from the classical Kubo formula

σ(ω) = L

kBT

∫ ∞
0

dt eiωt 〈J (t)J (0)〉 (14)

whereL is the sample length. The collective current density was calculated in [32]† and reads

j (x, t) = i
b

2
(1̇(x, t)1∗(x, t)−1(x, t)1̇∗(x, t)). (15)

The collective current is proportional to the time derivative ˙ϕ of the order parameter phase as
for the fully developed CDW, but the prefactor is different. The coefficientb in (15) is [31]

b2 =
(

e0

2kBT h̄νb

)2

(16)

involving the backward-scattering rateνb due to random static scattering centres. This formula
holds in the pure limit when the electron scattering rate obeys

h̄ν ≡ h̄(νf + νb/2) < 2πkBT .

The homogeneous current densityJ in (15) is related toj by

J (t) = 1

L

∫ L

0
dx j (x, t) = jk=0(t). (17)

In the linear setting of (1), not only does0 obey Gaussian statistics but so also does1, and
exact Gaussian decoupling gives

〈J (t)J (0)〉 = b2

2

∑
k

[
Ċ(k, t)2 − C(k, t)C̈(k, t)] (18)

provided that the correlation function

C(k, t) ≡ 〈1k(t)1
∗
k(0)〉 (19)

† S N Artemenko informed the author that he obtained the same expression for the collective current density by using
the Keldysh approach to CDW dynamics.
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is real and even int . C(k, t) is evaluated from (1) and explicitly given by

C(k, t) = 〈|1k|2〉0 exp

(
−γ0

2
|t |
)[

cosDkt +
γ0

2Dk

sinDk|t |
]

(20)

with

Dk =
√
ω2
k −

γ 2
0

4
. (21)

This leads to

Ċ2 − CC̈ = 〈|1k|2〉20ω2
k exp(−γ0|t |). (22)

Note that all oscillating terms in the correlation functions cancel out, leaving a purely relax-
ational response. If one were to use the correlation function

C(k, t) = 〈|1k|2〉0 exp(−γk|t |) (23)

for the overdamped version of (1) withγk = ω2
k/γ0, one would get an instantaneous response

〈J (t)J (0)〉 ∝ δ(t) and hence a frequency-independent conductivity.
Calculation of the conductivity using (22) gives, however, the correct result given in [35]

Reσ(ω) = σF γ 2
0

γ 2
0 + ω2

(24)

irrespective of the relation betweenγ0 andω0. The scale valueσF of the fluctuation conduct-
ivity is

σF = L2A4b2

16kBT ω2
0ξγ

3
0

(25)

and coincides with the result [31]. Explicitly,σF reads

σF = 2π2e2
0kBT vF√

7ζ(3)εRL(h̄νb)2
. (26)

The conductivity shows the mean-field critical behaviourσF ∝ ε−1/2
RL . In the picture of a

metal with order parameter fluctuations, the collective conductivity adds to the normal-state
conductivity

σN = 8e2
0vF /(4πh̄νb).

Formal calculations in higher spatial dimensions require a momentum cut-off, in contrast
to SC. This is related to the form of the collective current density (15).

3. Breaking of phase invariance

The space-time version of (1) is

1̈(x, t) + γ01̇(x, t) + ω2
0

(
1− ξ2 ∂2

∂x2

)
1(x, t) = 0(x, t). (27)

The simplest way to break the phase invariance of this equation is to add a pinning term

2ω2
i |1(x, t)| cosϕ(x, t) (28)

to the left-hand side, which is a simple local coupling. This is clearly not the general starting
point for treating pinning by random impurities [42,43]. However, it will become evident later
that this approach simulates local pinning because the final pinning frequency is proportional
to the impurity concentration.
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To arrive at (28) we start from the more general form

ω2
s

∑
i

h(x − xi)(1(xi, t) +1∗(xi, t)). (29)

The impurities are locally coupled to the order parameter. The real structure functionh(x)

transmits the effect to the order parameter atx. The terms1∗(xi, t) break phase invariance by
modelling backward scattering. The scale frequenciesωs andωi are different from the final
pinning frequency.

We make two further assumptions: the functionh is a contact interactionh(x) = liδ(x)
with a scattering lengthli . The crudest assumption is, however, that∑

i

→ ni

∫
dxi (30)

whereni is the density of impurities. This requiresniξ > 1 and amounts to an early impurity
average. Introducing the scale frequency

ω2
i ≡ ω2

s ni li (31)

then leads to (28).
This admittedly crude model has the advantage of allowing for an exact solution.
The complete GLL equation which replaces (1) can be written as

1̈k(t) + γ01̇k(t) + ω2
k1k(t) + ω2

i (1k(t) +1∗−k(t)) = 0k(t). (32)

The complex order parameter1(x, t) is decomposed into real and imaginary parts:

U(x, t) = Re1(x, t) and V (x, t) = Im1(x, t)

giving

1k = Uk + iVk (33)

with complexUk andVk which satisfy the usual reality conditions

U−k = U ∗k V−k = V ∗k . (34)

The Langevin equation splits into two equations forUk andVk:

Ük(t) + γ0U̇k(t) + ω2
kUk(t) + 2ω2

i Uk(t) = 0Uk(t)
V̈k(t) + γ0V̇k(t) + ω2

kVk(t) = 0Vk(t).
(35)

Here0Uk(t) and0Vk(t) are the Fourier transforms of the real and imaginary parts of
0(x, t), respectively. It is possible that the impurities modify the thermal random force
0(x, t). In our model we assume that this is not the case. This assumption is reasonable
for ωi � ω0. The random forces0Uk and0Vk are then independent Langevin forces with the
same statistical properties as0k(t) (cf. (9)) but only half its strength. The two equations (35)
become independent and are both isomorphic with (1). However, the frequencies for the
U -modes are modified and change their fluctuation intensities:

〈|Uk|2〉 =
(

1 + 2
ω2
i

ω2
k

)−1
kBT

2ak
〈|Vk|2〉 = kBT

2ak
. (36)

Hence the intensity of the fluctuating order parameter is reduced:

〈|1k|2〉 = 〈|1k|2〉0 1 + (ωi/ωk)2

1 + 2(ωi/ωk)2
. (37)

A thermodynamic derivation for (36) is given in appendix A. In view of the realistic condition
ωi � ωk, the renormalization of the mean square order parameter is irrelevant.
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The order parameter correlation function becomes

C(k, t) = p+C+(k, t) + p−C−(k, t) (38)

with weights

p+ = 1

2(1 + 2(ω2
i /ω

2
k))

p− = 1

2
(39)

and the replacement

Dk → D
(+)
k =

√
ω2
k + 2ω2

i −
γ 2

0

4
≡
√
(ω

(+)
k )

2 − γ
2
0

4
(40)

in the expression (20) forC(k, t) in order to getC+(k, t) while C−(k, t) remains unchanged,
i.e. formallyD(−)

k = Dk, ω
(−)
k = ωk. This solves the GLL equation (32) completely.

4. Discussion of fluctuation conductivity

We define the wavenumber-dependent pinning frequency

ωp(k) ≡ ω2
i

Dk

. (41)

From (31) it is seen thatωp(k) is proportional to the linear impurity concentration. Thus our
model simulates local pinning.

Using the conditionωi � Dk, the result of appendix B leads to the following expression
for the real part of the fluctuation conductivity:

Reσ(ω) = L

kBT

b2

4

∑
k

〈|1k|2〉20ω2
k

×
{[

γ0

γ 2
0 + ω2

]
AL

+

[
γ0

γ 2
0 + ω2

p(k) + ω2

(γ 2
0 + ω2 + ω2

p(k))
2 − 4ω2ω2

p(k)

]
P

+

[
γ0
ω2
p(k)

4D2
k

(3− γ 2
0 /ω

2
k)(γ

2
0 + 4D2

k )− ω2

(γ 2
0 + ω2 + 4D2

k )
2 − 16ω2D2

k

]
A

}
. (42)

Even before thek-summation is performed, three different contributions to the fluctuation
conductivity can be distinguished: the relic of the AL conductivity (AL) centred at zero
frequency, a pinned mode (P) near the frequencyωp(0), and a weak structure (A) associated
with the fluctuating amplitude modesωk. The latter results from selection rule breaking by
the impurities. Thus, traces of the fluctuating amplitude mode should be seen in the optical
conductivity. A similar case regarding the pinned Fröhlich mode is found in the fully developed
CDW [44,45].

Thek-summation is easily done for the AL part and gives

Reσ(ω)AL = 1

2
σF

γ 2
0

γ 2
0 + ω2

. (43)

This is exactly half the result (24). The spectral weightW according to

W ≡
∫ ∞
−∞

dω Reσ(ω) (44)

is

WAL = π

2
γ0σF . (45)
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A lengthy but exact calculation gives for the P mode

Reσ(ω)P = σF [J1(ω) + 2 ReJ2(ω)] (46)

with

J1(ω) = 1

2
γ 2

0

γ 2
0 + ω2 − 4ω4

i /γ
2
0

(ω2 + [γ0 + 2ω2
i /γ0]2)(ω2 + [γ0 − 2ω2

i /γ0]2)
(47)

and

J2(ω) = 2
ω0

γ0

ω4
i

4ω4
i /γ

2
0 − (γ0 + iω)2

1√
(4ω2

0 − γ 2
0 )(γ0 + iω)2 + 4ω4

i

. (48)

Note the non-algebraic structure of the conductivity due toJ2. The spectral weight associated
with Reσ(ω)P is independent of pinning parameters and given by

WP = π

2
γ0σF . (49)

It adds the missing half to the total spectral weightπγ0σF of the unpinned fluctuation
conductivity.

The amplitude mode is treated approximately. Assumingγ0 � 2ω0 and retaining the
k-dependence only in the prefactor, one finds

Reσ(ω)A = 3

64

ω4
i

ω4
0

σF

{
γ 2

0 (12ω2
0 − ω2)

(ω2 − 4ω2
0)

2 + 4ω2γ 2
0

}
. (50)

Omega

Re(Sigma)

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

Figure 1. The real part of the scaled fluctuation conductivity (the sum of equation (43) and equ-
ation (46)) in comparison to the unpinned case (grey line: equation (24)) as function of the scaled
frequency. The conductivity unit isσF according to equation (25) and the frequency unit is the
damping constantγ0 (cf. equation (2)) of the fluctuating amplitude mode. In these units the
following values were chosen: amplitude mode frequencyω0 = 40 and pinning scale frequency
ωi = 16. The actual pinning frequency is seen to be near 6γ0.
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The amplitude mode has a peak near 2ω0. Its spectral weightWA is small and given by

WA =
(

3

64

ω4
i

ω4
0

)
πγ0σF . (51)

Figure 1 shows the pinned fluctuation conductivity in comparison with the unpinned case
neglecting the weak-amplitude mode.

5. Summary

The Ginzburg–Landau–Langevin method is developed for the fluctuation conductivity in
charge-density-wave systems above the transition temperature when fluctuations are one
dimensional. An additional phase-breaking term due to impurities is introduced and its
consequences for the fluctuation conductivity are evaluated. It is found that the spectral
weight of the unpinned fluctuations is partly redistributed into a pinned mode around a pinning
frequency in the far infrared, as seen in experiments. In addition, selection rule breaking by the
impurities enables traces of the fluctuating amplitude mode to appear in the optical response.
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Appendix A. Pinned fluctuation intensity

The deterministic part of the GLL equation (32) can be expressed in terms of real variables
xkν as

ẍkν + γ0ẋkν = − ω
2
k

2ak

∂F

∂xkν
(A.1)

with the energy functional

F =
∑
k,ν

akνx
2
kν (A.2)

with

akν =
{
ak(1 + 2b(k)) ν = 1, 2

ak ν = 3, 4
(A.3)

and

b(k) ≡ ω2
i

ω2
k

. (A.4)

We have used the decomposition (33) and split the componentsUk and Vk into real and
imaginary parts:

Uk = xk1 + ixk2 Vk = xk3 + ixk4. (A.5)

Though in our model the random forces generate no dependence among thexkν , the latter are
not independent since thexkν are even underk → −k for ν = 1, 3 and odd forν = 2, 4. In
terms of independentxkν , the energyF becomes

F = 2
∑
k>0

4∑
ν=1

akνx
2
kν ≡

∑
k>0

4∑
ν=1

Fkν. (A.6)
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The statistical average of the independent variables is simply

〈x2
kν〉 =

(∫
dxkν x

2
kν exp(−βFkν)

)/(∫
dxkν exp(−βFkν)

)
(A.7)

and gives the results (36).

Appendix B. Calculation of fluctuation conductivity

We use (38) in the Kubo formula

σ(ω) = L

kBT

b2

2

∫ ∞
0

dt eiωt
∑
k

[
Ċ(k, t)2 − C(k, t)C̈(k, t)] . (B.1)

Splitting the correlation functionC(k, t) into its constituents gives

Ċ2 − CC̈ =
∑
ν=±

p2
ν(Ċ

2
ν − CνC̈ν) + p+p−

{
2Ċ+Ċ− − C+C̈− − C−C̈+

}
. (B.2)

The result (22) translates into

Ċ2
ν − CνC̈ν = 〈|1k|2〉20(ω(ν)k )2 exp(−γ0|t |) ν = ±. (B.3)

Hence

Ċ2 − CC̈ = 〈|1k|2〉20 exp(−γ0|t |)p+

[
ω2
k + ω2

i +
1

2

{
2Ċ+Ċ− − C+C̈− − C−C̈+

}]
. (B.4)

A somewhat tedious calculation gives a formally exact expression for the frequency-dependent
fluctuation conductivity:

σ(ω) = L

kBT

b2

2

∫ ∞
0

dt exp(iωt − γ0t)
∑
k

p+〈|1k|2〉20

×
[
ω2
k + ω2

i +
1

2

({
ω4
k + 2ω2

kω
2
i − γ 2

0 (ω
2
k + ω2

i )/4

D
(+)
k D

(−)
k

}
× (cos(D(+)

k −D(−)
k )t − cos(D(+)

k +D(−)
k )t)

+ (ω2
k + ω2

i )(cos(D(+)
k −D(−)

k )t + cos(D(+)
k +D(−)

k )t)

− γ0ω
2
i

2

(
1

D
(+)
k

+
1

D
(−)
k

)
sin(D(+)

k −D(−)
k )|t |

− γ0ω
2
i

2

(
1

D
(+)
k

− 1

D
(−)
k

)
sin(D(+)

k +D(−)
k )|t |

)
B

]
. (B.5)

This result is too complicated to be discussed in full generality. We will take advantage of the
fact that in practice the conditionω2

i � D2
k is fulfilled and perform an expansion of (B.5) with

respect to

ω2
i

D2
k

� 1. (B.6)

This gives

( )B → 2(ω2
k + ω2

i ) cos
ω2
i

Dk

t + ω4
i

ω2
k − γ 2

0 /2

2D4
k

cos 2Dkt

− γ0ω
2
i

Dk

sin
ω2
i

Dk

|t | + γ0ω
4
i

2D3
k

sin 2Dk|t | − ω4
i

ω2
k − γ 2

0 /2

2D4
k

cos
ω2
i

Dk

t. (B.7)
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It is easier to do the time integration for the real part of the conductivity in the approximated
version of (B.5). The imaginary part follows from the Kramers–Kronig relation. The relevant
terms up to orderω2

p(k) but neglecting small corrections of numerical constants of orderω2
i

are given as (42) in section 4.
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[9] Dressel M, Schwartz A, Grüner G and Degiorgi L 1996Phys. Rev. Lett.77398
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