IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Alternating-current conductivity of pinned charge-density-wave fluctuations in quasi-one-

dimensional conductors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys.: Condens. Matter 11 2637
(http://iopscience.iop.org/0953-8984/11/12/018)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.214
The article was downloaded on 15/05/2010 at 07:16

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/12
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys.: Condens. Mattéf (1999) 2637—2648. Printed in the UK PIl: S0953-8984(99)98093-1

Alternating-current conductivity of pinned
charge-density-wave fluctuations in quasi-one-dimensional
conductors

W Wonnebergert
Department of Physics, University of Ulm, D-89069 Ulm, Germany

Received 5 October 1998, in final form 21 December 1998

Abstract. Quasi-one-dimensional conductors which undergo a Peierls transition to a charge-
density-wave state at a temperatdie show a region of one-dimensional fluctuations abdye

The Ginzburg-Landau-Langevin theory for the frequency-dependent collective conductivity from
conductive fluctuations into the charge-density-wave state is developed. By inclusion of a phase-
breaking term the effect of local pinning due to random impurities is simulated. It is found that
the spectral weight of the unpinned fluctuations is partly redistributed into a pinned mode around a
pinning frequency in the far-infrared region. In addition, selection rule breaking by the impurities
makes the fluctuating amplitude mode visible in the optical response.

1. Introduction

Quasi-one-dimensional conductors like the transition metal chalcogenides are characterized
by a nested Fermi surface. This renders them unstable to the Peierls transition when electron—
phonon backscattering between the two sheets of the Fermi surface becomes relevant. We call
this a Peierls system (PS). The ensuing charge-density-wave (CDW) which develops below a

transition temperaturép of the order of 200 K shows many unusual properties, especially in

its electronic responses [1].

In recent years it became increasingly evident that the electronic properties of PS in
their normal phaseT( > Tp) are also unusual. Photoemission studies (references [2, 3]
and earlier work cited therein) point towards possible non-Fermi-liquid (NFL) behaviour.
The microwave and optical response also deviates from the Drude predictions for a normal
metal [4,5]. Specifically, the real part of the complex conductivity functioroRe, Tp)
for the chain direction and at room temperatd@geshows the presence of a pseudo-gap at
w ~ 2Ag WhereA is the zero-temperature half-gap of the corresponding CDW. In addition,

a peak structure appears in the far infrared well below the pseudo-gap. This peak resembles
the pinned Fohlich mode at about the same frequency but seen in the fully developed CDW.
Similar results were also found for PS films [6].

In principle, these features have been known of for a long time from studies of the CDW
material KP;(CN)4Bry3-3(H.0) (KCP) in which fluctuation effects due to intrinsic disorder
are prominent. In [7] the ac conductivity of KCP is modelled by a dielectric function which
takes pinning—unpinning fluctuations into account.

t Telephone: ++49 731502 2991/4; fax: ++49 731 502 3003; e-mail addr@sseberger@hysik.uni-ulm.de.

0953-8984/99/122637+12$19.50 © 1999 IOP Publishing Ltd 2637



2638 W Wonneberger

A related explanation for the optical data is provided by the concept of fluctuating CDW
segments which behave similarly to the fully developed CDW. These segments are pinned by
random impurities which break the phase invariance of the equation for the fluctuating order
parameter.

In view of the one-dimensional nature of fluctuations above the temperétuce Tp
below which transverse fluctuations set in to initiate the phase transition, the observed effects
could also be a signature of NFL behaviour. The latter seems to be established for some of the
Bechgaard salts [8—10] where CDW fluctuations are not important.

In the case of PS, the attractive backscattering and the softening of the Peierls phonons
make a plain Luttinger-liquid scenario unlikely. Voit [11, 12] advocates a Luther—Emery
state [13] for the electrons in blue bronze as an explanation of the photoemission spectra. In
this case a spin gap would open before true CDW formation occurred. Such conclusions,
however, are not undisputed. Shannon and Joynt [14] argue in favour of a model [15, 16] for
a fluctuating Peierls system (FPS). The unusual plasmon dispersion in quasi-one-dimensional
conductors can also be understood in terms of a conventional band picture [17]. There seemsto
be good reason to pursue the FPS concept for one-dimensional metals with CDW fluctuations.

The FPS model has recently been extended by McKenzie [18]. He calculates the one-
particle Green’s function for Gaussian order parameter fluctuations and large correlation length
using Sadovskii's exact method [19]. He points out that the electron spectral function of a
FPS is of NFL type as found earlier in the same context [20]. McKenzie also calculates
renormalized coefficients for Ginzburg—Landau functionals of PS. The model which we will
solve for the collective conductivity corresponds to the FPS concept.

The present paper computes the frequency-dependent conductivity from one-dimensional
conductive order parameter fluctuations using a modified, linear Ginzburg—Landau—Langevin
(GLL) equation for CDW including phase breaking by impurities. In superconductivity (SC)
where phase pinning does not exist, this part of the conductivity was first investigated by
Aslamazov and Larkin [21] (AL). The CDW version of the AL theory was given in [22].

From SC itis known [23,24] that there are two further contributions from order parameter
fluctuations to the dc conductivity: a resistive contribution from the reduction of the single-
particle density of states which is related to the pseudo-gap and the anomalous Maki—-Thompson
[25, 26] term which is conductive. In a CDW the latter becomes resistive [27] and dominates
the dc conductivity near the transition.

The issue of one-dimensional collective dc conductivity in a CDW was strongly debated
in the 1970s [22,28-32]. In [28] the idea of paraconductivity in one-dimensional metals with
dominant electron—phonon interaction was advanced using a GL approach. This result was
criticized in [29] where pinned collective fluctuations were shown to reduce the dc conductivity.
These authors also studied the corresponding results for the Hubbard and the Tomonaga—
Luttinger model. Detailed microscopic studies of FPS in [22, 30] find both resistive and
conductive fluctuations but neglect phase pinning. The dc paraconductivity of a commensurate
FPS was studied in [32] in a GL context. This paper served as a starting point for the present
work.

The paper is organized as follows. Section 2 develops the GLL approach for the CDW and
derives the known results for unpinned conductive fluctuations. Section 3introduces a modified
GLL equation where phase invariance is broken in a way which simulates local pinning
by random impurities, and evaluates the basic correlation function of the order parameter
fluctuations. This result is used to calculate the frequency-dependent collective conductivity
exactly within the model. The complicated formula is evaluated approximately for pinning
frequencies small in comparison to the frequency of amplitude fluctuations in section 4. Two
appendices present mathematical detalils.
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2. The Ginzburg—Landau-Langevin approach

It is interesting to formulate the problem of fluctuation ac conductivity in a CDW without
pinning using the GLL method. One expects to find close similarities to the elegant
formulations for SC [33, 34]. However, it turns out that one must go beyond overdamped
dynamics which in the case of a CDW would only give an instantaneous response in the
current correlation function and thus a frequency-independent conductivity.

Our starting point is the GLL equation given directly in terms of the gap fluctuatigns

Ar(t) + yoAr () + P A (1) = Ty (). ()

The parametergy and w; are taken from [28, 31]. Static parameters below correspond to
the rigid-lattice values in [18]. For simplicity, the renormalization of the rigid-lattice (RL)
values due to fluctuations as proposed in [18] is not considered. Together with Hartree—Fock
corrections to the linear GL equation as in [35], it would extend the region of applicability
of the linearized approach which is marginal at the RL level. This and the absence of
resistive fluctuations prohibit a quantitative comparison with experiments. Below the CDW
transition temperature, McKenzie's approach [18] is necessary to give the characteristic optical
absorption which has been measured in [36].

The damping constam is

hr
2
= 2
Yo = Wy 8kyT (2
where
w% = )»a)z) (€))

is the frequency of the amplitude mode of the fully developed CDW [&¢].is the bare
frequency of the 2= phonon which goes soft, ands the electron—phonon coupling constant.
The actual frequencyy, of the amplitude fluctuations in (1) is

of = W3(1 +k%?) 4)
with

60(2) = CL)%GRL. (5)
For definiteness we assume underdampigg{ 2wp) which is the case in the linear fluctuation
regime sufficiently above the transition temperature.

Without a form of selection rule breaking, neithex nor wy can be observed in optical

conductivity measurements. The amplitude maegle can be seen, however, in Raman
scattering [38, 39]. The fluctuating amplitude mode above the transition temperature is

observed in neutron scattering studies [40, 41].
The correlation length in (4) is

E2=&f/ers (6)

with ez, given by
T
err = In— 7
w=no- (7)

whereTy, is the rigid-lattice mean-field transition temperature. The reference lépgsh
given by [31]

g2 7¢(3)h%v2

O Loz T ©
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The complex Gaussian Langevin forcéhas zero mean. Its correlation function
kgT
(CeOT} () = (1AkI*)02y00F 8108 (1) = 2yow§%8k,kfa(r> = ASu8(1) ©)

is constructed in such a way as to give the fluctuation intensity
kgT

(1A% = (10)
ak
The latter follows from the linear free-energy functional
Fo=) a| Al (11)
k
with
Le
@ = fol+K%%)  fo=——. (12)
JT]’IUF
Note that (1) implies a spatial correlation of the order parameter according to
kgTwh
(A(x,0)A*(0,0)) = / dk €% (|AL 20 = (B TRV el = g2 eollE (13)
2§€RL
In the next step the one-dimensional conductivity is computed from the classical Kubo formula
o(w) = —— dr € (J (1) J (0)) (14)
kgT Jo

whereL is the sample length. The collective current density was calculated in [32]1 and reads
b . .
Jx, 1) = IE(A(x, DA™ (x, 1) — A(x, 1) A% (x, 1)). (15)

The collective current is proportional to the time derivatpvef the order parameter phase as
for the fully developed CDW, but the prefactor is different. The coeffickeint (15) is [31]

2
€g
= 16
< 2kpThvy ) (16)
involving the backward-scattering ratgdue to random static scattering centres. This formula
holds in the pure limit when the electron scattering rate obeys

hv =h(vy+v,/2) < 2mkgT.
The homogeneous current densityn (15) is related tg' by

1 L
J(@1) = Z/o dx j(x,1) = jk=o(?). 17)

In the linear setting of (1), not only do&sobey Gaussian statistics but so also daesand
exact Gaussian decoupling gives

2

b . .
(JOIO) =~ > [Ctk.0)? = Clk.)C (k. 1)] (18)

k
provided that the correlation function

C(k, 1) = (A AL(D) 19)

T S N Artemenko informed the author that he obtained the same expression for the collective current density by using
the Keldysh approach to CDW dynamics.
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is real and even in. C(k, r) is evaluated from (1) and explicitly given by

ck, 1) = (1A 0exp| = 2ie1 ) | cosDir + X2 sin Dy 1| (20)
2 2D,
with
2
Dy = | w? — %0. 1)

This leads to
C? — CC = (| AP 2w? exp(—yolt)). (22)

Note that all oscillating terms in the correlation functions cancel out, leaving a purely relax-
ational response. If one were to use the correlation function

C(k, 1) = (| Ar|®oexp(—ylt]) (23)

for the overdamped version of (1) with = w?/yo, one would get an instantaneous response
(J()J(0)) o< 8(¢) and hence a frequency-independent conductivity.
Calculation of the conductivity using (22) gives, however, the correct result given in [35]

2
Reo (@) = o —0— (24)
Vo tow
irrespective of the relation betweeg andwy. The scale value of the fluctuation conduct-

ivity is

L2A%D?
OfF = ﬁ (25)
16](3 T(,()O%' )/O
and coincides with the result [31]. Explicitly reads
2ﬂ2€ngTUF (26)

T T @er v

The conductivity shows the mean-field critical behaviegro e,gi/ 2. In the picture of a
metal with order parameter fluctuations, the collective conductivity adds to the normal-state
conductivity

oy = Segvp/(élnﬁvb).

Formal calculations in higher spatial dimensions require a momentum cut-off, in contrast
to SC. This is related to the form of the collective current density (15).

3. Breaking of phase invariance

The space-time version of (1) is

.. ) 92
Ax, 1) + poA(x, 1) +a)§(1 — g2 ﬁ)A(x, 1) =T(x,0). (27)
X
The simplest way to break the phase invariance of this equation is to add a pinning term
2w?|A(x, 1)| cOSp(x, 1) (28)

to the left-hand side, which is a simple local coupling. This is clearly not the general starting
point for treating pinning by random impurities [42,43]. However, it will become evident later
that this approach simulates local pinning because the final pinning frequency is proportional
to the impurity concentration.
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To arrive at (28) we start from the more general form
W2 Y h(x = x)(Axi, 1) + A*(x;, 1)). (29)

The impurities are locally coupled to the order parameter. The real structure fun¢tipn
transmits the effect to the order parameter.athe termsA*(x;, ¢) break phase invariance by
modelling backward scattering. The scale frequeneieandw; are different from the final
pinning frequency.

We make two further assumptions: the functiors a contact interaction(x) = [;6(x)
with a scattering length. The crudest assumption is, however, that

Z — n; / dx; (30)

wheren; is the density of impurities. This requirest > 1 and amounts to an early impurity
average. Introducing the scale frequency

w? = wPnil; (31)

then leads to (28).
This admittedly crude model has the advantage of allowing for an exact solution.
The complete GLL equation which replaces (1) can be written as

Ag(0) + yoAi (1) + @f A1) + 0P (Ax(1) + A* (1)) = T (0). (32)
The complex order parametan(x, t) is decomposed into real and imaginary parts:
U,t) =ReA(x, 1) and Vix,t) =ImA(x,1t)

giving

A =U +1V; (33)
with complexU;, andV; which satisfy the usual reality conditions

U_,=U; Vo =V (34)

The Langevin equation splits into two equations f@rand V;:
Ui () + voU (1) + 0ZUr(t) + 207U (1) = Ty ()
Vi) + yoVi () + f Vie(1) = Ty (1).

Here 'y, (¢t) and 'y, (¢) are the Fourier transforms of the real and imaginary parts of
I'(x, t), respectively. It is possible that the impurities modify the thermal random force
['(x,1). In our model we assume that this is not the case. This assumption is reasonable
for w; < wg. The random forceBy; andI'y, are then independent Langevin forces with the
same statistical properties Bg(t) (cf. (9)) but only half its strength. The two equations (35)

become independent and are both isomorphic with (1). However, the frequencies for the
U-modes are modified and change their fluctuation intensities:

2\ —1

(U2 = (1+2Z—%) szTZ (IVil?) = % (36)

Hence the intensity of the fluctuating order parameter is reduced:
1+ (w; /wx)?

1+ 2w; fwp)?

A thermodynamic derivation for (36) is given in appendix A. In view of the realistic condition
w; < wy, the renormalization of the mean square order parameter is irrelevant.

(39)

(1AL = (1A (37)
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The order parameter correlation function becomes

C(k,t) = p+Ci(k,t) + p_C_(k, 1) (38)
with weights
1 1
P ot 20?ed) P72 (39)
and the replacement
2 2
D, — D,Eﬂ = \/a),% + 20)[2 - VZO = \/(a),(:))z - VZO (40)

in the expression (20) faf (k, ¢) in order to getC. (k, t) while C_(k, t) remains unchanged,
i.e. formally D{” = Dy, w{” = w;. This solves the GLL equation (32) completely.

4. Discussion of fluctuation conductivity
We define the wavenumber-dependent pinning frequency
w,(k) = —-. (42)

From (31) it is seen thab, (k) is proportional to the linear impurity concentration. Thus our
model simulates local pinning.
Using the conditionv; « Dy, the result of appendix B leads to the following expression
for the real part of the fluctuation conductivity:
L b?
kpT 4 4

[ Yo } Vs + @ (k) + o
X |7
i+l |08t e? +ed(0)? — 4Pl k) |,

N [ 0p (k) 3= y§/wp) (v + 4D}) — wz} }
A

Reo (0) = (1AA3w?

Y74DZ (2 + w? + 4D2)? — 1602 D? (42)
Even before the&-summation is performed, three different contributions to the fluctuation
conductivity can be distinguished: the relic of the AL conductivity (AL) centred at zero
frequency, a pinned mode (P) near the frequeng{0), and a weak structure (A) associated
with the fluctuating amplitude modes;.. The latter results from selection rule breaking by
the impurities. Thus, traces of the fluctuating amplitude mode should be seen in the optical
conductivity. A similar case regarding the pinnedliich mode is found in the fully developed
CDW [44,45].

Thek-summation is easily done for the AL part and gives

1 2
Reo (w)ar = =0 Yo

A 43
2 F yoz + (,()2 ( )
This is exactly half the result (24). The spectral weighfccording to
oo
w E/ dw Reo (w) (44)
is
b
WaL = S V00F. (45)

2
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A lengthy but exact calculation gives for the P mode

Reo (w)p = or[J1(w) + 2ReJz2(w)] (46)
with
1 )/2 + c02 _ 40){1/7/2
J - = 2 0 i 0 47
1) 270 (@2 + [yo + 202 /70]2) (@2 + [0 — 202/ y0]?) “7)
and
4
Ja(w) = 22 @ ! (48)

0 i
7©Qﬁhﬁ—(W+hm2JGW§—mﬁO©+WF+*ﬁ.

Note the non-algebraic structure of the conductivity duétoThe spectral weight associated
with Reo (w) p is independent of pinning parameters and given by

T
Wp = E)/()O'F. (49)
It adds the missing half to the total spectral weightyor of the unpinned fluctuation

conductivity.
The amplitude mode is treated approximately. Assumingg 2w and retaining the
k-dependence only in the prefactor, one finds

Reo (w) 4 = 6—34 Z—gop { (wz"f (Llé‘é’)i: j:)zyg } . (50)
Re(Sigma)

1
0.8
0.6
0.4
0.2

\,\
o2 AOme%a 8 10

Figure 1. The real part of the scaled fluctuation conductivity (the sum of equation (43) and equ-
ation (46)) in comparison to the unpinned case (grey line: equation (24)) as function of the scaled
frequency. The conductivity unit isr according to equation (25) and the frequency unit is the
damping constangg (cf. equation (2)) of the fluctuating amplitude mode. In these units the
following values were chosen: amplitude mode frequengy= 40 and pinning scale frequency
w; = 16. The actual pinning frequency is seen to be near 6



AC conductivity of pinned CDW fluctuations 2645

The amplitude mode has a peak neag.2lts spectral weightV, is small and given by
3w}
Wa=|=—% . 51
A (64wé>nyan (51)
Figure 1 shows the pinned fluctuation conductivity in comparison with the unpinned case
neglecting the weak-amplitude mode.

5. Summary

The Ginzburg—Landau—-Langevin method is developed for the fluctuation conductivity in
charge-density-wave systems above the transition temperature when fluctuations are one
dimensional. An additional phase-breaking term due to impurities is introduced and its
consequences for the fluctuation conductivity are evaluated. It is found that the spectral
weight of the unpinned fluctuations is partly redistributed into a pinned mode around a pinning
frequency in the far infrared, as seen in experiments. In addition, selection rule breaking by the
impurities enables traces of the fluctuating amplitude mode to appear in the optical response.
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Appendix A. Pinned fluctuation intensity

The deterministic part of the GLL equation (32) can be expressed in terms of real variables
Xy AS

2
. . w; OF
L+ - Tk Al
Xkv T Y0Xkv 20z dxpy (A1)
with the energy functional
F = Zakvx,fv (A.2)
k,v
with
1+2h(k =12
e = ax( (k)) v (A3)
ai v=234
and
w2
b(k) = —. (A.4)
w

k
We have used the decomposition (33) and split the comporignend V; into real and
imaginary parts:

Ur = xi1 +ixgz Vi = xi3 + ixga. (A.5)
Though in our model the random forces generate no dependence amang the latter are

not independent since the, are even undet — —k for v = 1, 3 and odd fonv = 2, 4. In
terms of independent,,,, the energyF becomes

4

4
F=23">anx},=> > Fu. (A.6)
1

k>0 v=1 k>0 v=
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The statistical average of the independent variables is simply

xkv (/ dxkv xku eX[X IBFkU)>/</ dxkv eXFX_:BFkv)> (A7)

and gives the results (36).

Appendix B. Calculation of fluctuation conductivity
We use (38) in the Kubo formula

o(w )_WE/ dr e'“” C(k, %= Ck,t)C(k, 1)]. (B.1)

Splitting the correlation functiod' (k, #) into its constituents gives
C?—CC =) piC2—C,C) + psp_{2C.C_ - C:C_—C_Ci}. (B2)
v==%

The result (22) translates into
C2—C.Cy = (AP exp—ypolt])  v==. (B.3)
Hence

C? — CC = (|ArP5exp(—yolt]) p+ [w,f +w? + > [2c.C_ - C.C_ - ca}] ) (B.4)

A somewhat tedious calculation gives a formally exact expression for the frequency-dependent
fluctuation conductivity:

2 %)

L b .
o(w) = —— dr explior — yot) ZP+<|Ak|2>(2)
0

20202 — 12(2 + 2
X |:a),f +? + %({ wj + 20fw] - Vo((‘)f)k w; )/4}
Dk Dk
x (cog DY — D)t — cog DY + D7)
+ (wf + w)) (cog D" — D)t + cos DY + D))

2
: 1 1 . _
_ 1o < + )sm(D,i“ — D))t

2 \of " b

2
vowf [ 1 1 . -
2 <D<+> - D<—>)Sln(D15+)+D15 ))|f|) } =
k k B

This result is too complicated to be discussed in full generality. We will take advantage of the
fact that in practice the conditian? < D? is fulfilled and perform an expansion of (B.5) with
respect to

2

-
v (B.6)
This gives
2 _ )/2 2
O = 2(w? +0?) cosD f+w 42—f cos 2Dyt
oyl . of Yo; v5/2

sin— 7| + —% sm2Dk|t|—l 4 cos—t. (B.7)
Dy = Dy 2D} 21) Dy
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It is easier to do the time integration for the real part of the conductivity in the approximated
version of (B.5). The imaginary part follows from the Kramers—Kronig relation. The relevant
terms up to ordem,z)(k) but neglecting small corrections of numerical constants of arder

are given as (42) in section 4.
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